kuartildi bagi menjadi 3 kuartil 1 (q1) atau kuartil bawah adalah nilai tengah antara nilai terendah dan median kuartil 2 (q2) atau nilai tengah/median adalah nilai tengah dari suatu data kuartil 3 (q3) atau kuartil atas adalah nilai tengah antara median dan nilai tertinggi mencari kuartil untuk data ganjil kuartil = data ke (n+1)/2 mencari HaloValey V, kakak bantu jawab yaa :) Jawaban yang benar adalah (B) 6,5. Pembahasannya sebagai berikut. Rumus simpangan kuartil SK = ½(Q₃ - Q₁) Q₃: nilai kuartil 3 Q₁: nilai kuartil 1 Cara menentukan kuartil data tunggal 1) urutkan terlebih dahulu dari data terkecil ke terbesar 2) tentukan Qᵢ dengan cara membagi data menjadi 4 bagian setara. .. Untukmenentukan kuartil pada data tunggal, kita harus mempertimbangkan banyaknya data (n) (n) terlebih dahulu. Penghitungan kuartil tergantung dari kondisi banyaknya data tersebut. Sebagai ilustrasi, misalkan terdapat seperangkat data yaitu x_1, x_2, \cdots, x_n. x1,x2,⋯,xn. Letak-letak kuartil pada data tersebut dapat dilihat pada gambar di Pertama Anda harus mengurutkan data untuk menemukan kuartil atas dan bawah. Adapun kuartil bawah Q1 tersebut di angka 32 dan kuartil atas Q3 berkisar 47. Sehingga disimpulkan rentang interkuartil yaitu Q3-Q1 atau sama dengan 47-32 yaitu 15. Simpangan kuartilnya adalah ½ h atau 15:2, hasilnya menjadi 7,5. . Materi yang satu ini mungkin cukup sulit dipahami oleh Sobat Zenius. Akan tetapi, elo nggak perlu khawatir. Pasalnya, dalam artikel ini gue mau ngebahas secara detail mengenai materi simpangan kuartil, mulai dari rumus dan cara mencari simpangan kuartil, jangkauan antar kuartil, langkah, pagar hingga contoh soalnya. Sebelumnya kita sudah pernah bahas tentang simpangan kuartil data tunggal dan data kelompok. Kita juga sudah pernah bahas desil dan persentil. Ternyata, masih ada, lho, pembahasan lanjutan dari materi ini. Ukuran penyebaran data perlu Sobat Zenius kuasai setelah mengetahui nilai dari masing-masing kuartil. Lantas, bagaimana cara menghitung simpangan kuartil? Nah, daripada Sobat Zenius semakin penasaran, yuk, simak artikel ini sampai selesai! Apa yang Dimaksud Jangkauan, Jangkauan Antar-kuartil, Simpangan Kuartil, Langkah, dan Pagar?Rumus Simpangan Kuartil, Jangkauan antar Kuartil, Jangkauan Kuartil, Langkah, dan PagarContoh SoalSoal Latihan Apa yang Dimaksud Jangkauan, Jangkauan Antar-kuartil, Simpangan Kuartil, Langkah, dan Pagar? Jangkauan biasa disebut juga dengan range atau rentang. Jangkauan dinyatakan dengan huruf J. Jangkauan adalah selisih dari data/datum terbesar dikurangi data/datum terkecil. Jangkauan antar kuartil dinamakan juga rentang antar-kuartil atau hamparan. Jangkauan antar kuartil dinyatakan dengan huruf H. Jangkauannya merupakan selisih antara kuartil atas/Q3 dan kuartil bawah/Q1. Simpangan kuartil dinamakan juga rentang semi antar-kuartil karena merupakan setengah dari hamparan atau jangkauan antar-kuartil. Nilai dari simpangan kuartil juga dapat digunakan untuk melihat jarak dari kuartil dua ke kuartil satu atau ke kuartil tiga, karena sebenarnya nilai simpangan kuartil adalah rata-rata jarak dari kuartil tersebut. Namun, nilai ini tidak selalu tepat, ya. Dalam statistika, pengertian langkah adalah satu setengah kali panjang satu hamparan. Sebenarnya, langkah digunakan untuk mencari nilai pagar dalam dan pagar luar. Pagar terbagi atas pagar dalam dan pagar luar. Pagar dalam adalah nilai satu langkah di bawah kuartil bawah. Pagar luar adalah nilai satu langkah di atas kuartil atas. Pagar digunakan untuk membatasi data. Biasanya, jika data normal, data hanya berada di dalam pagar dalam dan pagar luar. Nah, sebelum lanjut ke pembahasan mengenai rumus simpangan kuartil dan lainnya, Sobat Zenius bisa banget, lho, download aplikasi Zenius dulu! Lewat aplikasi, elo bakal menemukan ribuan contoh soal beserta pembahasan yang bisa elo pelajari dengan saksama, mulai dari contoh soal Matematika, Bahasa Indonesia, Bahasa Inggris, hingga mata pelajaran lainnya. Jadi, nggak usah lama-lama lagi, segera download banner di bawah ini untuk download aplikasinya! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! Tidak banyak perbedaan pada masing-masing rumusnya, baik pada tunggal maupun data kelompok. Perbedaan terdapat pada nilai data terkecil dan data terbesar pada jangkauan, Sobat Zenius. Pada data tunggal, data terkecil dan data terbesarnya dapat dilihat secara jelas, sedangkan pada data kelompok data terkecil dan data terbesarnya diambil dari batas bawah kelas bawah dan batas atas kelas atas. Yuk, kita intip rumus-rumusnya! Rumus jangkauan Rumus jangkauan antar kuartil Rumus simpangan kuartil Rumus langkah Rumus pagar Pagar dalam = Pagar luar = Contoh Soal Nah, kini Sobat Zenius sudah tahu, kan, rumus-rumusnya. Sekarang, mari kita coba lihat contoh soal simpangan kuartil, jangkauan kuartil, jangkauan antar kuartil, pagar, dan langkah. Data tunggal Dari data 6, 6, 7, 9, 13, 16, 20, berapa nilai jangkauan, jangkauan antar-kuartil, simpangan kuartil, langkah, dan pagarnya? Jangkauan J = 20 – 6 Jangkauan antar kuartil Tentukan terlebih dahulu nilai Q1, Q2, dan Q3. Dari data tersebut, diperoleh Q1 = 6, Q2 = 9, dan Q3 = 16 H = 16 – 6 = 10 Simpangan kuartil Cara mencari simpangan kuartil data tunggal bisa Sobat Zenius aplikasikan menggunakan rumus yang sudah disebutkan sebelumnya. Dari rumus di atas, kita bisa mendapatkan angka berikut Qd = ½ H = ½ 10 = 5 Langkah L = 3/2 H = 3/2 10 = 15 Pagar dalam Pd = 6 – 15 = -9 Pagar luar Pl = 16 + 15 = 31 Data kelompok Dari tabel di atas, berapa nilai jangkauan, jangakauan antar-kuartil, simpangan kuartil, langkah, dan pagarnya? Jangkauan Pada data seperti tabel di atas, X min dan X max bukanlah 40 dan 69, tetapi 39,5 dan 69,5. J = 69,5 – 39,5 = 30 Jangkauan antar kuartil Tentukan terlebih dahulu nilai Q1, Q2, dan Q3. Dari data tersebut, diperoleh Q1 = 49,7, Q2 = 52,7, dan Q3 = 57 Setelah itu, Sobat Zenius bisa gunakan rumus jangkauan antar kuartil di bawah ini H = 57 – 49,7 = 7,3 Simpangan kuartil Pakai rumus di bawah ini untuk mencari simpangan kuartil data kelompok Qd = ½ H = ½ 7,3 = 3,65 Langkah L = 3/2 H = 3/2 7,3 = 10,95 Pagar Pagar dalam = Pd = 49,7 – 10,95 = 38,75 Pagar luar = Pl = 57 + 10,95 = 67,95 Sekarang giliran Sobat Zenius. Jawab soal di bawah ini dengan benar, ya! Soal Latihan Tentukan jangkauan, jangkauan antar-kuartil, simpangan kuartil, langkah, dan pagar dari data berikut 3, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8! Jangkauan = … Jangkauan antar-kuartil = … Simpangan kuartil = … Langkah = … Pagar dalam = … Pagar luar = … Jika Sobat Zenius sudah berhasil menjawabnya, berarti elo sudah paham dengan materi kali ini. Namun, jangan berhenti sampai di sini, ya, guys. Perbanyak latihan soal! Itu dia penjelasan singkat dari gue mengenai rumus simpangan kuartil, jangkauan antar kuartil, pagar, hingga langkah. Pada dasarnya, materi Statistika yang satu ini tidak begitu sulit jika Sobat Zenius terus belajar dan berlatih dengan tekun. Beruntungnya Sobat Zenius bisa latihan dengan konsisten melalui ribuan contoh soal yang disediakan sama Zenius, nih! Selain contoh soal, di sana juga pembahasan yang bikin elo makin jago dalam ngerjain soal ujian nantinya. Kalau elo mau berlatih dari sekarang, gampang banget! Elo bisa segera langganan paket Zenius dengan klik gambar di bawah ini! Nah, sebelum itu, elo juga bisa mempelajari materi simpangan kuartil lebih dalam lagi melalui video pembahasan dari tutor Zenius. Buat aksesnya, elo tinggal klik banner di bawah ini, ya! Selamat belajar! Jangan lupa juga untuk mengikuti keseruan lainnya dari Zenius di YouTube! Sampai jumpa di materi lainnya! Baca Juga Artikel Lainnya Rumus Kuartil Rumus Desil dan Persentil Rumus Peluang Originally published September 18, 2021Updated by Maulana Adieb Simpangan Kuartil – Setelah sebelumnya telah membahas materi tentang Persamaan Eksponen. Maka dipertemuan kali ini akan menerangkan materi secara lengkap tentang simpangan kuartil beserta pengertian, rumus, cara menghitung dan contoh soalnya. Untuk lebih jelasnya mari simak ulasan yang sudah rangkum dibawah ini. Pengertian Simpangan Kuartil Kuartil ialah merupakan suatu nilai-nilai yang membagi data yang telah diurutkan kedalam empat bagian yang nilainya sama besar. Pada saat menentukan letak kuartil data tunggal, Maka harus melihat kondisi jumlah data n terlebih dahulu. Kuartil ialah merupakan suatu bilangan yang dapat dianggap membagi data yang telah diurutkan menurut besarnya, dari yang terkecil keyang terbesar menjadi empat sub kelompok sama banyak. Jangkauan kuartil disebut juga dengan simpangan kuartil atau rentang semi antar. Kuartil pada suatu data dapat didapatkan dengan cara membagi data tersebut secara terurut menjadi empat bagian yang memiliki nilai sama besar. K3 – K1. / JAK ialah merupakan jangkauan antar kuartil, K3 dan, K1 =kuartil ke 1. Nilai Standart z-Score Misalkan kita mempunyai suatu sampel yang berukuran n banyak datanya = n, dan dari datanya x1, x2, x3,…,xn. Maka rata-rata nya = x. Dan simpangan bakunya ialah s maka membentuk data baru z1, z2, z3,…, zn dengan menggunakan Koefisien Variasi. Dibawah ini terdapat 3 jenis-jenis kuartil, antara lain Kuartil Bawah Q1 Langkah awal ialah dengan mencari nilai kuartil bawah, kemudian diperoleh Bb Batas bawah dari nilai kuartil, fk frekuensi komulatif diperoleh dari jumlah frekuensi persis diatas data frekuensi. Lalu fQ1 ialah frekuensi dari data itu tersendiri. Kuartil Tengah Q2 Dengan terlebih dahulu mencari nilai kuartil tengah, lalu diperoleh Bb Batas bawah dari nilai kuartil, fk frekuensi komulatif diperoleh dari jumlah frekuensi persis diatas data frekuensi. Lalu fme adalah frekuensi dari data itu tersendiri. Kuartil Atas Q3 Dengan terlebih dahulu mencari nilai kuartil atas, lalu diperoleh Bb Batas bawah dari nilai kuartil, fk frekuensi komulatif diperoleh dari jumlah frekuensi persis diatas data frekuensi. Lalu fQ3 adalah frekuensi dari data itu tersendiri. Rumus Kuartil Untuk Nilai Data Tunggal Dari keterangan kuartil diatas, maka dapat kita ketahui bahwa kuartil ialah membagi data menjadi empat bagian sama banyak. Oleh sebab itu, terdapat tiga nilai kuartil yang membagi data tersebut. Sebelum melakukan pembagian data, pastikan bahwa data tersebut sebelumnya sudah kita urutkan terlebih dahulu. Untuk lebih jelasnya dapat dilihat ilustrasi dibawah berikut Dalam mencari nilai kuartil untuk data tunggal, rumus dibedakan menjadi dua kasus, yakni untuk jumah data ganjil dan jumlah data genap. Untuk n ganjil, yakni Sedangkan cara untuk mencari n genap, yakni Kemudian langkah untuk mencari tiga nilai kuartil data tunggal untuk jumlah data genap ialah Tentukanlah nilai yang menjadi nilai tengahnya median atau Q². Membagi data di sebelah kiri median menjadi dua bagian yang sama dan menghasilkan kuartil bawah atau Q¹. Membagi data di sebelah kanan median menjadi dua bagian yang sama dan menghasilkan kuartil atas atau Q². Rumus Simpangan Kuartil Di bawah ini merupakan rumus kuartil data kelompok, yaitu Rumus Keterangan i = 1 untuk kuartil bawah i = 2 untuk kuartil tengah i = 3 untuk kuartil atas Tb = tepi bawah kelas kuartil n = jumlah seluruh frekuensi fk = jumlah frekuensi sebelum kelas kuartil fi = frekuensi kelas kuartil p = panjang kelas interval Cara Menghitung Rumus Kuartil Cara untuk menentukan kuartil adalah sebagai berikutini . Urutkan data dari yang terkecil hingga dengan data yang terbesar. Tentukan Q2 atau median. Tentukan Q1 dengan cara membagi data di bawah Q2 menjadi dua bagian yang sama besar. Tentukan Q3 dengan cara membagi data di atas Q2 menjadi dua bagian sama besar. Contoh Soal Simpangan Kuartil Contoh Soal 1 Tentukanlah jangkauan interkuartil & simpangan kuartil pada data berikut ini Jawaban Langkah pertama ialah dengan mengurutkan data untuk mencari kuartil atas & kuartil bawahnya, lihatlah pada gambar dibawah ini. Jadi, kuartil bawah Q1 & kuartil atas Q3, dari kedua data tersebut yakni 30 & 45 maka QR = Q3 – Q1 QR = 45 – 30 QR = 15 Simpangan kuartilnya yaitu Qd = ½QR Qd = Qd = 7,5 Jadi jawabannya ialah jangkauan interkuartil & simpangan kuartil dari data tersebut adalah 15 & 7,5. Contoh Soal 2 Tentukanlah jangkauan interkuartil & simpangan kuartil pada data berikut ini Jawaban Hal pertama yang harus dilakukan ialah pertama kita akan mengurutkan data untuk mencari kuartil atas & kuartil bawahnya, lihatlah pada gambar dibawah ini. Jadi Q1 = 42 + 43/2 Q1 = 42,5 Q3 = 49 + 56/2 Q3 = 52,5 Jadi QR = Q3 – Q1 QR = 52,5 – 42,5 QR = 10 Simpangan kuartilnya ialah Qd = ½QR Qd = Qd = 5 Jadi jawabannya ialah jangkauan interkuartil & simpangan kuartil dari data tersebut ialah 10 & 5. Demikianlah materi pembahasan kali ini mengenai simpangan kuartil, semoga artikel ini bermanfaat bagi sobat semua. Artikel Lainnya Integral Substitusi Bentuk Akar Bilangan Rasional A. Simpangan KuartilAdik-adik, tahukah kalian? Simpangan kuartil dismbolkan dengan Qd. Apa itu simpangan kuartil? Simpangan kuartil adalah setengah dari jangkauan kuartil atau setengah dari hamparan atau setengah dari jangkauan interkuartil. Rumusnya bisa dituliskanB. Simpangan Rata-rata1. Simpangan rata-rata data tunggal2. Simpangan rata-rata data kelompokYuk kita lihat contoh soalnya1. Diketahui data 12, 14, 15, 16, 17, 17, 18, 19Hitunglah simpangan kuartil dari data tersebut!JawabBanyak data ada adalah antara data ke 4 dan data ke 5Q2 = 16 + 17 2 = 33 2 = 16,5Q1 = 14 + 15 2 = 29 2 = 14,5Q3 = 17 + 18 2 = 35 2 = 17,5Simpangan QuartilQd = ½ Q3 – Q1 = ½ 17,5 – 14,5 = ½ 3 = 1,52. Berapakah simpangan kuartil dari data 6, 7, 7, 8, 8 , 8, 9, 9, 10, 11, 12, 13JawabBanyaknya data = 12Q2 adalah diantara data ke 6 dan data ke 7Q2 = 8 + 9 2 = 17 2 = 8,5Q1 = 7 + 8 2 = 15 2 = 7,5Q3 = 10 + 11 2 = 21 2 = 10,5Qd = ½ Q3 – Q1 = ½ 10,5 – 7,5 = ½ 3 = 1,53. Berapakah simpangan kuartil dari data 7, 5, 10, 20, 13, 8, 2JawabUrutkan dulu datanya 2, 5, 7, 8, 10, 13, 20Banyak data = 7Q2 adalah data ke 4Q2 = 8Q1 = 5Q3 = 13Qd = ½ Q3 – Q1 = ½ 13 – 5 = ½ 8 = 44. Tentukan simpangan rata-rata dari data 32, 23, 28, 26, 20, 11, 22, 8, 17, 13JawabPertama, cari rata-ratax ̅= 32 + 23 + 28 + 26 + 20 + 11 + 22 + 8 + 17 + 13 10 = 200 10 = 205. Perhatikan tabel berikutSimpangan rata-rata dari data di atas adalah...Jawabx ̅ = 2 x 6 + 3 x 9 + 4 x 5 + 5 x 7 + 6 x 3 30 = 12 + 27 + 20 + 35 + 18 30= 112 30= 3,7Oke.. semoga kalian semakin paham ya dengan 2 materi ini.. sampai bertemu di materi-materi selanjutnya... Kelas 12 SMAStatistika WajibKuartilKuartilStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0220Manajer restoran cepat saji mengamati dan menghitung wakt...0335Nilai kuartil atas dari data pada tabel berikut adalah .....0343Perhatikan data berikut. Berat Badan Frekuensi 50-54 4 55...0340Tabel berikut menunjukkan distribusi frekuensi jarak tola...Teks videoDi sini ada sebuah pertanyaan simpangan kuartil dari data 10 13 12 11 14 15, 17 16 12 14 13 11 17 adalah Oke jadi di sini saya akan rumus dan juga tabel frekuensinya perhatikan di sini sudah ada tabel frekuensinya ya di sini ada datanya dan isinya adalah frekuensinya dimana total adalah 13. Nah, lalu di sini sudah ada ketentuan untuk mencari Q1 dan q3. Nah rumus untuk mencari simpangan kuartil adalahsimpangan kuartil promosi adalah Q 3 kurang Q 1 dibagi 2 nah balik dari sini harus mencari q3 dan Q 1 terlebih dahulu Nah di sini datanya 13 ya ganjil dan jika 13 ditambah satu itu tidak habis dibagi 4 batik harus menggunakan rumus ini untuk Q1 dan juga untuk ketiga rumus ini Mas ke-11 berarti X dikurang satu 13 dikurang satu 12 dibagi 4 berarti data yang ke 3 dan ditambah dengan isinya 13 + 13 / 4. Bakti idhata yang ke-empat dibagi dua Matikan data yang tanda tanya ke-4 adalah 12 berarti 11 + 12 / 2 hasilnya adalah 11,5 nilai kita punya Sekarang kita harus mencari ketiganya ketiganya di sini 3 dikali 1339 ditambah 140 dibagi 4 berarti x 10 + 13333 + 9 + 54 + 4 dibagi 4. Berarti data yang ke-11 dibagi 20 adalah 3679 di sini. Berarti data yang ke-10 di sini datang ke 11 berarti 15 + 16 / 12,5. Nah, Berarti simpangan kuartil adalah ketika menjadi SK simpangan kuartil berarti 15,5 kurang 11,5 / 2 di sini berarti 4 / 2 hasilnya adalah 2 jawabannya adalah Baiklah sekian pembahasan soal kanida sampai jam 16 anSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Sobat Pintar pasti sudah kenal dengan statistika, bukan? Statistika banyak dimanfaatkan untuk mengumpulkan data, baik data tunggal maupun data kelompok, dalam skala kecil atau skala besar. Statistika terbagi menjadi beberapa subbab, salah satunya adalah ukuran letak data. Sobat Pintar sudah tahu belum ukuran letak data terbagi menjadi berapa macam, hayo? Yap! Betul sekali, Sobat! Ukuran letak data meliputi kuartil, desil, dan persentil. Nah, kali ini kita akan membahas mengenai simpangan kuartil. Sebelumnya, Sobat Pintar harus tahu cara menentukan kuartil atas dan kuartil bawah ya! Masih ingat nggak cara menentukan kuartil? Yuk! Kita belajar bersama untuk mengenal apa itu simpangan kuartil serta cara menentukan simpangan kuartil lewat artikel ini. Sobat Pintar, sudah tahu belum apa sih kuartil itu? Kuartil adalah nilai yang membagi data yang berurutan menjadi empat bagian yang sama banyak. Karena data terbagi menjadi empat bagian yang sama, artinya terdapat tiga nilai kuartil, yaitu kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3­. Nah, terus apa hubungannya kuartil dengan simpangan kuartil? Jika kuartil merupakan salah satu jenis ukuran letak data, simpangan kuartil sendiri merupakan ukuran penyebaran data. Simpangan kuartil atau bisa disebut juga jangkauan semi antar kuartil merupakan setengah dari jangkauan antar kuartil. Istilah lain dari simpangan kuartil adalah deviasi kuartil atau rentang semi-interkuartil. Seperti yang Sobat tahu nih, Jangkauan antar kuartil sendiri merupakan selisih antara kuartil atas dengan kuartil bawah. Jadi, cara untuk menentukan simpangan kuartil adalah dengan menentukan nilai dari kuartil atas dan juga kuartil bawah. Nilai dari simpangan kuartil dapat digunakan untuk melihat jarak dari kuartil dua ke kuartil satu atau ke kuartil tiga, karena sebenarnya nilai simpangan kuartil adalah rata-rata jarak dari kuartil tersebut. Inget ya, Sobat, nilai rata-rata jarak dari kuartil ini tidak selalu benar. Simpangan kuartil dilambangkan dengan Qd. Secara sistematis, rumus dari simpangan kuartil yaitu Seperti yang sudah kakak sebutkan sebelumnya, untuk menentukan simpangan kuartil, kita harus menentukan nilai dari kuartil atas dan kuartil bawah dahulu, Sobat. Dalam menentukan nilai kuartil atas dan bawah terbagi menjadi dua cara berdasarkan data yang diketahui, yaitu data tunggal dan data kelompok. Masih ingat cara menentukan nilai kuartil atas dan kuartil bawah dari data tunggal maupun data kelompok? Nah biar ingat, kita latihan dulu, yuk! Sebelum latihan soal, kalau Sobat Pintar butuh pembelajaran materi lewat video? Coba simak contoh soal berikut ya! Contoh Soal Simpangan Kuartil Contoh 1 Diketahui data 10, 10, 10, 11, 13, 10, 6, 2, 5, 6, 10, 3, 3, 3, 6, 6, 10, 11, 10. Simpangan kuartilnya adalah …. Pembahasan Urutkan data terlebih dahulu menjadi 2, 3, 3, 3, 5, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, 11, 11, 13 Kemudian bagi data menjadi 4 bagian dengan menentukan nilai kuartilnya Jadi, simpangan kuartilnya adalah 2,5 Contoh 2 Perhatikan tabel berikut ini! Jangkauan semi antarkuartilnya adalah …. Pembahasan Jadi, jangkauan semi antarkuartilnya adalah 1 Contoh 3 Perhatikan tabel data berkelompok berikut! Nilai simpangan kuartilnya adalah …. Pembahasan Jadi, simpangan kuartilnya adalah 5,625 Nah, Sobat, segitu dulu nih materi dan contoh soal mengenai simpangan kuartil. Ternyata mudah, bukan? Selain materi simpangan kuartil, kalian juga bisa belajar tentang materi-materi statiska yang lebih lengkap melalui aplikasi Aku Pintar di fitur Belajar Pintar mata pelajaran Matematika. Sampai bertemu di pembahasan berikutnya, Sobat Pintar! Sobat Pintar punya tugas yang susah?

simpangan kuartil dari data 16 15 15